Abstract

In the present day, distributed algorithms become more popular due to their diversity in several applications. The prediction and reorganization of medical data required more practice and information. We propose a novel approach feature selection based on efficient chronic kidney disease (CKD) prediction and classification. Primarily, the pre-processing pace will be implemented over the input data. Then, the grey wolf optimization (GWO) algorithm gets executed to choose the optimal features from the pre-processed data. Next, the projected technique exploits the Hybrid Kernel Support Vector Machine (HKSVM) as a classification model to identify the presence of CKD or not. The simulation takes place in MATLAB. The validation of the presented model takes place using a benchmark CKD dataset as of machine learning repository such as UCI under the presence of several measures. New outcome specified that the planned categorization arrangement has surpassed by containing enhanced 97.26% accuracy for kidney chronic dataset when contrasted with existing SVM technique only accomplished 94.77% and fuzzy min–max GSO neural network (FMMGNN) classifier accomplished 93.78%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.