Abstract

Distributed parameter systems (DPS) are a class of infinite dimensional systems. However implemental control design requires low-order models. This work will focus on developing a low-order model for a class of quasi-linear parabolic distributed parameter system with unknown linear spatial operator, unknown linear boundary condition as well as unknown non-linearity. The Karhunen-Loeve (KL) Empirical Eigenfunctions (EEFs) are used as basis functions in Galerkin's method to reduce the Partial Differential Equation (PDE) system to a nonlinear low-order Ordinary Differential Equation (ODE) system. Since the states of the system are not measurable, a recurrent Radial Basis Function (RBF) Neural Network (NN) observer is designed to estimate the states and approximate unknown dynamics simultaneously. Using the estimated states, a hybrid General Regression Neural Network (GRNN) is trained to be a nonlinear offline model, which is suitable for traditional control techniques. The simulations demonstrate the effectiveness of this modeling method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call