Abstract
Judgment is the ability to make a considered decision by an evolution of knowledge. With the increasing trend of applications of artificial intelligence in law, divorce prediction has become the centre of research. Divorce classification and divorce factors determination are two of the most important matters in societies. Developing an effective technique is essential to prevent communities from collapsing. The traditional techniques of artificial intelligence play a major role in classifying divorce cases. Feature selection is a powerful pre-processing method used for data classification problems. Most previous studies on divorce classification focused on heuristic feature selection methods to determine the main factors behind divorce. These heuristic methods are considered the greedy strategy which does not produce an optimal solution. In this research, a new hybrid swarm intelligence technique was proposed using particle swarm optimisation for feature selection and the K-nearest neighbour algorithm for classification. Specifically, the proposed hybrid classifier can be used in real divorce applications where judges in their investigations can identify the factors that lead to the applications. For the experiment, five classifiers were used for performance analysis. The proposed technique was successfully applied and showed that the performance is better than the existing classifiers, namely naive Bayes, support vector machine, artificial neural network, repeated incremental pruning to pro-duce error reduction, and decision stump. Therefore, the proposed classification model is a more suitable technique for divorce classification than other artificial intelligence techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal on Advanced Science, Engineering and Information Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.