Abstract

A multifunctional crosslinkable and ionic-group functionalized ladder-like polysilsesquioxane was synthesized and utilized for the fabrication of hybrid ionogels for lithium ion batteries. The ionic-group functionalized ladder-like polysilsesquioxane combined the synergistic effects of hybrid materials in improving the thermal stability of conventional battery electrolytes, whilst maintain facile solution processability and chemically crosslinkable function in ionic conducting ionic liquid electrolyte media. Fabricated iongel electrolytes exhibiting exceptional thermal stability, mechanical properties, high ionic conductivity, and electrochemical stability. Lithium ion batteries fabricated with the hybrid ionic ladder-like polysilsesquioxane ionogels exhibited initial discharge capacities on par with neat liquid electrolytes, good rate performance, as well as stable cyclability and excellent Coulombic efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.