Abstract
Inversion methods that rely on measurements of the hydraulic head h cannot capture the fine-scale variability of the hydraulic properties of an aquifer. This is particularly true for direct inversion methods, which have the further limitation of providing only deterministic results. On the other hand, stochastic simulation methods can reproduce the fine-scale heterogeneity but cannot directly incorporate information about the hydraulic gradient. In this work, a hybrid approach is proposed to join a direct inversion method (the comparison model method, CMM) and multiple-point statistics (MPS), for determination of a hydraulic transmissivity field T from a map of a reference hydraulic head $$h^\mathrm {(ref)}$$ and a prior model of the heterogeneity (a training image). The hybrid approach was tested and compared with pure MPS and pure CMM approaches in a synthetic case study. Also, sensitivity analysis was performed to test the importance of the acceptance threshold $$\delta $$ , a simulation parameter that allows one to tune the influence of $$h^\mathrm {(ref)}$$ on the final results. The transmissivity fields T obtained using the hybrid approach take into account information coming from the hydraulic gradient while simultaneously reproducing some of the fine-scale features provided by the training image. Furthermore, many realizations of T can be obtained thanks to the stochasticity of MPS. Nevertheless, it is not straightforward to exploit the correlation between the T maps provided by the CMM and the prior model introduced by the training image, because the former depends on the boundary conditions and flow settings. Another drawback is the growing number of simulation parameters introduced when combining two diverse methods. At the same time, this growing complexity opens new possibilities that deserve further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.