Abstract

Technology development brought numerous lifestyle changes. People move around with smart gadgets and devices in the home, work environment, and familiar places. The Internet acts as a backbone for all applications and connecting multiple devices to set up a smart environment is technically termed as IoT (Internet of Things). The feature merits of IoT are explored in numerous fields from simple psychical data measurement to complex trajectory data measurement. Where the place is inaccessible to humans, IoT devices are used to analyze the region. Though IoT provides numerous benefits, due to its size and energy limitations, it faces security and privacy issues. Intrusions in IoT networks have become common due to these limitations and various intrusion detection methods are introduced in the past decade. Existing learning-based methods lag in performance while detecting multiple attacks. Conventional detection models could not be able to detect the intrusion type in detail. The diverse IoT network data has several types of high dimensional features which could not be effectively processed by the conventional methods while detecting intrusions. Recently improvements in learning strategies proved the performance of deep learning models in intrusion detection systems. However, detecting multiple attacks using a single deep learning model is quite complex. Thus, in this research a multi deep learning model is presented to detect multiple attacks. The initial intrusion features are extracted through the AlexNet, and then essential features are selected through bidirectional LSTM. Finally, the selected features are classified using the decision tree C5.0 algorithm to attain better detection accuracy. Proposed model experimentations include benchmark NSL-KDD dataset to verify performances and compared the results with existing IDSs based on DeepNet, Multi-CNN, Auto Encoder, Gaussian mixture, Generative adversarial Network, and Convolutional Neural Network models. The proposed model attained maximum detection accuracy of 98.8% over conventional methods. Overall, an average of 15% improved detection performance is attained by the proposed model in detecting several types of intrusions in the IoT network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call