Abstract

This article presents a new learning methodology based on a hybrid algorithm for interval type-1 non-singleton type-2 TSK fuzzy logic systems (FLS). Using input-output data pairs during the forward pass of the training process, the interval type-1 non-singleton type-2 TSK FLS output is calculated and the consequent parameters are estimated by the recursive least-squares (RLS) method. In the backward pass, the error propagates backward, and the antecedent parameters are estimated by the back-propagation (BP) method. The proposed hybrid methodology was used to construct an interval type-1 non-singleton type-2 TSK fuzzy model capable of approximating the behavior of the steel strip temperature as it is being rolled in an industrial Hot Strip Mill (HSM) and used to predict the transfer bar surface temperature at finishing Scale Breaker (SB) entry zone. Comparative results show the performance of the hybrid learning method (RLS-BP) against the only BP learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.