Abstract

This study elaborated the mechanism whereby the hypervelocity impact shielding efficiency of a stuffed Whipple shield design can be enhanced by improving the energy absorption of a fabric back bumper. Two system designs, an interspaced fabric system and a free-boundary fabric system, were discussed and studied in terms of their hypervelocity impact performance at approximately 3.8 km/s. Both the fabric systems were found to increase the energy absorbed by the back bumper compared to the conventional fabric system. Consequently, a hybrid fabric system, incorporating both the interspaced and free-boundary fabric systems, was designed based on the experimental observations from conventional and the aforementioned fabric systems, and the hypervelocity impact performance of this hybrid bumper was evaluated at different impact velocities. The experiments showed that the hybrid back bumper fabric system exhibited significantly improved energy absorption, thus improving the shielding efficiency of the Whipple shield at higher velocities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call