Abstract

This review focuses on organic-inorganic hybrid nanocomposites, a research area that has made rapid progress in recent years. Inorganic components (hosts) include both natural materials (clays, silicates, smectites, layered phosphates, and others) and compounds prepared by different synthetic techniques. Into their interlayer spaces, various organic guests—solvents, monomers, and polymers—can be intercalated. Among the hybrid nanocomposites analyzed in detail are those based on polyconjugated electrically conducting polymers, such as poly(aniline) and poly(pyrrole), and various mineral matrices. Particular attention is paid to polymer-metal chalcogenide nanocomposites and their applications as semiconducting materials. One of the most common and practically important intracrystalline processes in the fabrication of hybrid nanocomposites is the incorporation of monomer molecules into pores of the host, followed by controlled internal transformations into polymer, oligomer, or hybrid-sandwich products (in situ postintercalative transformations). This approach is often called “ship-in-the-bottle” polymerization. Another widely used approach is the incorporation of macromolecules into layered host lattices from solutions or melts. This process offers the possibility of producing graphite intercalation compounds and inorganic-organic multilayer composites, including self-assembled nanocomposites in the form of (P/M)n multilayers, where M and P are oppositely charged inorganic and polymer nanolayers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call