Abstract

AbstractThe text discusses the concept of hybrid intelligence, which is a form of collaboration between machines and humans. It describes how this concept can be used in manufacturing to help improve productivity. The text also discusses how this concept can be used to help humans learn from machines. There is a debate in the intelligence community about the role of humans vs. machines. Machine intelligence can do some things better than humans, such as processing large amounts of data, but is not good at tasks that require common sense or empathy. Augmented intelligence emphasizes the assistive role of machine intelligence, while hybrid intelligence posits that humans and machines are part of a common loop, where they adapt to and collaborate with each other. The text discusses the implications of increasing machine involvement in organizational decision-making, specifically mentioning two challenges: negative effects on human behavior and flaws in machine decision-making. It argues that, in order for machine intelligence to improve decision-making processes, humans and machines must collaborate. The chapter argues that hybrid intelligence is the most likely scenario for decision-making in the future factory. The chapter discusses the advantages of this approach and how it can be used to improve quality control in a production system. The transformer-based language model called GPT-3 can be used to generate summaries of text. This task is difficult for machines because they have to understand sentiment and meaning in textual data. The model is also a “few-shot learner,” which means that it is able to generate a text based on a limited amount of examples. Transformer-based language models are beneficial because they are able to take the context of the processed words into consideration. This allows for a more nuanced understanding of related words and concepts within a given text.[Abstract generated by machine intelligence with GPT-3. No human intelligence applied.]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.