Abstract

Dual-comb interferometry is based on self-heterodyning two optical frequency combs, with corresponding mapping of the optical spectrum into the radio-frequency domain. The dual comb enables diverse applications, including metrology, fast high-precision spectroscopy with high signal-to-noise ratio, distance ranging, and coherent optical communications. However, current dual-frequency-comb systems are designed for research applications and typically rely on scientific equipment and bulky mode-locked lasers. Here we demonstrate a fully integrated power-efficient dual-microcomb source that is electrically driven and allows turnkey operation. Our implementation uses commercially available components, including distributed-feedback and Fabry-Perot laser diodes, and silicon-nitride photonic circuits with microresonators fabricated in commercial multiproject wafer runs. Our devices are therefore unique in terms of size, weight, power consumption, and cost. Laser-diode self-injection locking relaxes the requirements on microresonator spectral purity and $Q$ factor, so that we can generate soliton microcombs resilient to thermal frequency drift and with pump-to-comb sideband efficiency of up to 40% at mW power levels. We demonstrate down-conversion of the optical spectrum from 1400 to 1700 nm into the radio-frequency domain, which is valuable for fast wide-band Fourier spectroscopy, which was previously not available with chip-scale devices. Our findings pave the way for further integration of miniature microcomb-based sensors and devices for high-volume applications, thus opening up the prospect of innovative products that redefine the market of industrial and consumer mobile and wearable devices and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call