Abstract
Heterogeneous integration of III-V compound semiconductors on Silicon on Insulator is one the key technology for next-generation on-chip optical interconnects. In this context, the use of photonic crystals lasers represents a disruptive solution in terms of footprint, activation energy and ultrafast response. In this work, we propose and fabricate very compact laser sources integrated with a passive silicon waveguide circuitry. Using a subjacent Silicon-On-Insulator waveguide, the emitted light from a photonic crystal based cavity laser is efficiently captured. We study experimentally the evanescent wave coupling responsible for the funneling of the emitted light into the silicon waveguide mode as a function of the hybrid structure parameters, showing that 90% of coupling efficiency is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.