Abstract

The field of Wireless Sensor Networks (WSNs) has revolutionized tremendously in the recent past with its major application in Wireless Body Area Networks (WBANs). This has in the same dimension attracted immense interests from the researchers and technology providers. The operational modality of the WBANs is that a few sensor nodes are placed in or around the body and that they are meant to operate within a limited condition while providing high performance in terms of WBAN life time, high throughput, high data reliability, minimum or no delay and low power consumption. As most of the WBAN operates within the universal Industrial, Scientific and Medical (ISM) Narrow Band (NB) wireless band (2.4 Ghz) frequency band, this has posed a challenge in respect to inter, intra and co-channel interference especially in dense areas and high mobility scenarios. As well the body posture changes dynamically due to these mobility effects. In this paper, we propose a hybrid WBAN interference mitigation model based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Contention Window (CW) approach and User Priority (UP) queues. Using Omnet++ simulation, a comparison to the IEEE 802.15.6 based WBAN protocol is presented under the standing, walking sitting and Lying postural mobility scenarios. The results show that the proposed hybrid model outperforms IEEE 802.15.6 based CSMA/CA protocol in areas of network throughput, bandwidth efficiency and network delay in these mobility postures.

Highlights

  • Wireless sensor networks (WSN) is a technology which consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data through the network to a main location [1]

  • We propose a hybrid Wireless Body Area Networks (WBANs) interference mitigation model based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Contention Window (CW) approach and User Priority (UP) queues

  • As well Movassaghi et al [14] states that the requirements of WBANs based on the institute of electrical and electronics engineers (IEEE) 802.15.6 standard are: the bit rate of a link is in the range of 10 kbps to 10 Mbps, packet error rate should be less than 10% for a 256 octet payload for 95% of links, and the time to join or leave a network should be less than 3s

Read more

Summary

Introduction

Wireless sensor networks (WSN) is a technology which consists of spatially distributed autonomous sensors to monitor physical or environmental conditions, such as temperature, sound, pressure, etc. and to cooperatively pass their data through the network to a main location [1]. Due to the special needs of the healthcare applications, a special BAN technology called the wireless body area sensor networks (WBANs) was developed to majorly operate as the IEEE 802.15.6 standard as the IEEE 802.15.4 has been retained to operate in legacy WSN such as in industrial applications and other large scale environmental monitoring systems which can scale up to 100 m in radius. Since the sensor monitoring includes lifesaving human body signs which may determine between life and death for the patient, high reliability is expected in both the sensing and data transmission [3] Performance of these WBANs decreases in high interference scenario’s such as densely populated areas and in the ISM wireless band as this frequency band has co-channel interference from other technologies using the same frequency, such as IEEE 802.15.1 (Bluetooth), IEEE 802.11 (wireless fidelity - Wi-Fi) and IEEE 802.15.4 (zigbee). Our proposed model is a hybrid WBAN Interference mitigation model which makes use of the CSMA/CA CW technique and User Priority (UP) queues technique

Mile et al DOI
Result accuracy
Related Work
Motivation
Proposed Model
Performance Parameters
Performance Analysis
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call