Abstract
Residual water (H2O) presents in nonaqueous electrolytes has been widely regarded as a detrimental factor for lithium (Li) batteries. This is because H2O is highly reactive with the commonly used LiPF6 salt leading to the formation of HF which subsequently corrodes battery materials. In this work, we demonstrate that a controlled trace-amount of H2O (25–50 ppm) can be an effective electrolyte additive for achieving dendrite-free Li metal deposition in LiPF6-based electrolytes, while avoid detrimental effects. Detailed analyses revealed that the trace amount of HF derived from the decomposition reaction of LiPF6 with H2O is electrochemically reduced during the initial Li deposition process to form a uniform and dense LiF-rich solid electrolyte interphase (SEI) layer on the surface of the substrate. This LiF-rich SEI layer leads to a uniform distribution of the electric field on the substrate surface thereby enabling uniform and dendrite-free Li deposition. Meanwhile, the detrimental effect of HF on the other cell components is diminished due to the consumption of the HF in the LiF formation process. Microscopic analysis reveals that the as-deposited, dendrite-free Li films exhibit a self-aligned and highly-compact Li nanorod structure which is consistent with a vivid blue color due to structural coloration. These findings clearly demonstrate a novel approach to control the nucleation and grow processes of Li metal films using a well-controlled, trace-amount of H2O, as well as illuminate the effect of H2O on other electrodeposition processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.