Abstract

Novel hybrid hyaluronan (HA) hydrogel encapsulating nanogels was designed for sustained delivery of protein. HA modified with 2-aminoethyl methacrylate was cross-linked via Michael addition in the presence of cholesteryl group-bearing pullulan (CHP) nanogels. The nanogels were physically entrapped and well dispersed in a three-dimensional network of chemically cross-linked HA (HA gel). Therapeutic peptides and proteins, such as glucagon-like peptide-1, insulin and erythropoietin, were spontaneously trapped in the CHP nanogels in the HA gel just by immersing hybrid hydrogels into the drug solutions. CHP/protein complex nanogels were released from the hybrid hydrogels in a sustained manner both in vitro and in vivo. The release was controlled by the cross-linking density and the degradability of the HA gel, modulated by the initial gelation condition. The synergy between the CHP nanogel as a drug reservoir and the HA gel as a nanogel-releasing matrix of the hybrid hydrogel system simultaneously achieved both simple drug loading and controlled release with no denaturation of the protein drugs. This is a new method of fabricating biodegradable controlled release matrix with molecular chaperone-like activity for therapeutic proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.