Abstract

Human skin detection is an essential step in most human detection applications, such as face detection. The performance of any skin detection system depends on assessment of two components: feature extraction and detection method. Skin color is a robust cue used for human skin detection. However, the performance of color-based detection methods is constrained by the overlapping color spaces of skin and non-skin pixels. To increase the accuracy of skin detection, texture features can be exploited as additional cues. In this paper, we propose a hybrid skin detection method based on YIQ color space and the statistical features of skin. A Multilayer Perceptron artificial neural network, which is a universal classifier, is combined with the k-means clustering method to accurately detect skin. The experimental results show that the proposed method can achieve high accuracy with an F1-measure of 87.82% based on images from the ECU database.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.