Abstract

The present work is performed within the framework of the EUROfusion DEMO project. Previously, it was demonstrated that for a maintained magnetic flux the use of HTS conductors at highest magnetic field in a layer-wound CS coil would allow the reduction of its outer radius by around 0.5 m as compared to the DEMO reference design using only Nb3Sn conductors. Alternatively, the superior high field performance of HTS conductors can be used to maximize the magnetic flux of a CS coil with a given outer diameter, which could significantly prolong the duration of plasma burn phase and thus the overall power plant efficiency. In the present study, the maximization of the magnetic flux, generated by a layer-wound CS coil of fixed outer radius, is considered. HTS conductors are envisaged to be used at highest field, while Nb3Sn and NbTi are foreseen to be used in intermediate and low field layers, respectively. The inner radius of the CS coil is optimized with respect to the generation of a maximum flux taking into consideration the superconductor properties, the hoop stress and the axial stress. In order to provide reasonable starting values for the finite element analysis, first a simplified model with layer-dependent current densities, however, without stainless steel grading will be considered. In the final outline design of the CS coil a superconductor and stainless steel grading will be implemented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.