Abstract

A hybrid heterojunction and solid‐state photoelectrochemical solar cell based on graphene woven fabrics (GWFs) and silicon is designed and fabricated. The GWFs are transferred onto n‐Si to form a Schottky junction with an embedded polyvinyl alcohol based solid electrolyte. In the hybrid solar cell, solid electrolyte serves three purposes simutaneously; it is an anti‐reflection layer, a chemical modification carrier, and a photoelectrochemical channel. The open‐circuit voltage, short‐circuit current density, and fill factor are all significantly improved, achieving an impressive power conversion efficiency of 11%. Solar cell models are constructed to confirm the hybrid working mechanism, with the heterojunction junction and photoelectrochemical effect functioning synergistically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call