Abstract

Cancer survival prediction requires exploiting related multimodal information (e.g., pathological, clinical and genomic features, etc.) and it is even more challenging in clinical practices due to the incompleteness of patient's multimodal data. Furthermore, existing methods lack sufficient intra- and inter-modal interactions, and suffer from significant performance degradation caused by missing modalities. This manuscript proposes a novel hybrid graph convolutional network, entitled HGCN, which is equipped with an online masked autoencoder paradigm for robust multimodal cancer survival prediction. Particularly, we pioneer modeling the patient's multimodal data into flexible and interpretable multimodal graphs with modality-specific preprocessing. HGCN integrates the advantages of graph convolutional networks (GCNs) and a hypergraph convolutional network (HCN) through node message passing and a hyperedge mixing mechanism to facilitate intra-modal and inter-modal interactions between multimodal graphs. With HGCN, the potential for multimodal data to create more reliable predictions of patient's survival risk is dramatically increased compared to prior methods. Most importantly, to compensate for missing patient modalities in clinical scenarios, we incorporated an online masked autoencoder paradigm into HGCN, which can effectively capture intrinsic dependence between modalities and seamlessly generate missing hyperedges for model inference. Extensive experiments and analysis on six cancer cohorts from TCGA show that our method significantly outperforms the state-of-the-arts in both complete and missing modal settings. Our codes are made available at https://github.com/lin-lcx/HGCN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.