Abstract
During the last two decades, UAV emerged as standard platform for photogrammetric data collection. Main motivation in that early phase was the cost effective airborne image collection at areas of limited size. This was already feasible by rather simple payloads like an off-the-shelf, compact camera and a navigation-grade GNSS sensor. Meanwhile, dedicated sensor systems enable applications that have not been feasible in the past. One example is the airborne collection of dense 3D point clouds at millimetre accuracies, which will be discussed in our paper. For this purpose, we collect both LiDAR and image data from a joint UAV platform and apply a so-called hybrid georeferencing. This process integrates photogrammetric bundle block adjustment with direct georeferencing of LiDAR point clouds. By these means georeferencing accuracy is improved for the LiDAR point cloud by an order of magnitude. We demonstrate the feasibility of our approach in the context of a project, which aims on monitoring of subsidence of about 10 mm/year. The respective area of interest is defined by a ship lock and its vicinity of mixed use. In that area, multiple UAV flights were captured and evaluated for a period of three years. As our main contribution, we demonstrate that 3D point accuracies at sub-centimetre level can be achieved. This is realized by joint orientation of laser scans and images in a hybrid adjustment framework, which enables accuracies corresponding to the GSD of the captured imagery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ISPRS Open Journal of Photogrammetry and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.