Abstract

Simulated annealing is one of the several heuristic optimisation techniques, that has been studied in the past to determine the most effective mix of weapons and their allocation to enemytargets in a multilayer defence scenario. Simulated annealing is a general stochastic search algorithm. It is usually employed as an optimisation method to find a near-optimal solution forhard combinatorial optimisation problems, but it is very difficult to give the accuracy of the solution found. To find a better solution, aji often used strategy is to run the algorithm byapplying the existing best solution from the population space as the initial starting point. Giving many passes of genetic algorithm can generate the best start-point solution. This paper describes a new hybrid optimisation method, named genetic-simulated annealing, that combines the global crossover operators from genetic algorithm and the local stochastic hill-climbing features from simulated annealing, to arrive at an improved solution with reduced computational time. The basic idea is to use the genetic operators of genetic algorithm to quickly converge the search to a near-global minima/maxima, that will further be refined to a near-optimum solution by simulated anneling using annealing process. The new hybrid algorithm has been applied to optimal weapon allocation in multilayer defence scenario problem to arrive at a better solution than produced by genetic algorithm or simulated annealing alone.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.