Abstract
Stressis a major problem facing our world today and affects everyday lives providing motivation to develop an objective understanding of stress during typicalactivities. Physiological and physical response signals showing symptoms for stress can be used to provide hundreds of features. This encounters the problem of selecting appropriate features for stress recognition from a set of features that may include irrelevant, redundant or corrupted features. In addition, there is also a problem for selecting an appropriate computational classification model with optimal parameters to capture general stress patterns. The aim of this paper is to determine whether stress can be detected from individual-independent computational classification models with a genetic algorithm (GA) optimization scheme from sensor sourced stress response signals induced by reading text. The GA was used to select stress features, select a type of classifier and optimize the classifier’s parameters for stress recognition. The classification models used were artificial neural networks (ANNs) and support vector machines (SVMs). Stress recognition rates obtained from an ANN and a SVM without a GA were 68% and 67% respectively. With a GA hybrid, the stress recognition rate improved to 89%. The improvement shows that a GA has the capacity to select salient stress features and define an optimal classification model with optimized parameter settings for stress recognition.Keywordsstress classificationartificial neural networksgenetic algorithmssupport vector machinesreading
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.