Abstract

Job shop scheduling has been the focus of a substantial amount of research over the last decade and most of these approaches are formulated and designed to address the static job shop scheduling problem. Dynamic events such as random job arrivals, machine breakdowns and changes in processing time, which are inevitable occurrences in production environment, are ignored in static job shop scheduling problem. As dynamic job shop scheduling problem is known NP-hard combinatorial optimization, this paper introduces efficient hybrid Genetic Algorithm (GA) methodologies for minimizing makespan in this kind of problem. Various benchmark problems including the number of jobs, the number of machines, and different dynamic events are generated and detailed numerical experiments are carried out to evaluate the performance of proposed methodologies. The numerical results indicate that the proposed methods produce superior solutions for well-known benchmark problems compared to those reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.