Abstract
Wireless sensor networks (WSNs) are used in industrial applications and focused on target coverage and node connectivity based WSNs. The set of sensors and targets is placed in optimal position the target coverage and node connectivity achieving maximum with limited senor nodes. To resolve this problem, the proposed hybrid genetic algorithm combined with lifting wavelet multi-resolution principles for recognizing optimal position for sensors to cover entire targets present in the fields. The hybrid genetic algorithm randomly identifies each sensor position and 2D Haar lifting wavelet transform to improve the quality of target coverage by adjusting node position. The 2D Haar lifting decomposes the population matrix into the optimal position of sensors. Experimental results show the performance of the proposed hybrid genetic algorithm and fast local search method compared with available algorithms improves the target coverage and the number of nodes with varying and fixed sensing ranges with a different region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.