Abstract

Gelatin based hydrogels are often incorporated with supporting materials such as chitosan, poly(vinyl alcohol), alginate, carbon nanotubes, and hyaluronic acid. These hybrid materials are specifically of interest in diversified nanomedicine fields as they exhibit unique physicochemical properties, antimicrobial activity, biodegradability, and biocompatibility. The applications include drug delivery, wound healing, cell culture, and tissue engineering. This paper reviews the various up-to-date methods to fabricate gelatin-based hydrogels, including UV photo-cross-linking, electrospinning, and 3D bioprinting. This paper also includes physical, chemical, mechanical, and biocompatibility characterization studies of several hybrid gelatin hydrogels and discusses their relevance in nanomedicine based applications. Challenges associated with the fabrication of hybrid materials for nanotechnology implementation, specifically in nanomedicine development, are critically discussed, and some future recommendations are provided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call