Abstract

Lately, Convolutional Neural Networks (CNNs) have been introduced to extract features and further enhance the classification performance in different application areas. In this study, a hybrid fuzzy multiple (HFM)-SVM design with the convolution-base (which consists of a series of pooling and convolutional layers) and composite kernel function is proposed. The objective of the proposed classifier is to enhance the nonlinear fitting ability of the classifier and improve the classification performance in high-dimensional applications. The key points of the proposed HFM SVM are enumerated as follows: 1) The convolution-base of the proposed classifier extracts features. The extracted features exhibit flexibility and applicability in high-dimensional applications. 2) The proposed HFM SVM designed with the composite kernel could adjust the nonlinear fitting ability for improving classification performance. The procedure of the proposed HFM SVM is described as follows: Convolution-base is considered as a preprocessing unit for extracting features. The features are not always linearly separable especially when being extracted from high dimensional data. A composite kernel function is constructed by considering the complicated (nonlinear) classification boundary into several local linear boundaries. The structure of the extracted features is captured by FCM clustering and integrated into the composite kernel function for enhancing the nonlinear fitting ability of the proposed classifier. The nonlinearity of the composite function can fill the gap between linear and nonlinear kernel functions by adjusting the number of clusters obtained by the FCM clustering algorithm. The proposed HFM SVM classifier based on composite kernel could improve the classification performance on high dimensional datasets. The performance of the proposed HFM SVM is experimented with and demonstrated by using three high-dimensional applications to show the effectiveness as well as performance improvement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.