Abstract
In this paper a class of hybrid-fuzzy models is presented, where binary membership functions are used to capture the hybrid behavior. We describe a hybrid-fuzzy identification methodology for non-linear hybrid systems with mixed continuous and discrete states that uses fuzzy clustering and principal component analysis. The method first determines the hybrid characteristic of the system inspired by an inverse form of the merge method for clusters, which makes it possible to identify the unknown switching points of a process based on just input–output (I/O) data. Next, using the detected switching points, a hard partition of the I/O space is obtained. Finally, TS fuzzy models are identified as submodels for each partition. Two illustrative examples, a hybrid-tank system and a traffic model for highways, are presented to show the benefits of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.