Abstract

In this paper, a hybrid fuzzy adaptive output feedback control design approach is proposed for a class of multiinput and multioutput strict-feedback nonlinear systems with unknown time-varying delays, unmeasured states, and input saturation. First, fuzzy logic systems are employed to approximate unknown nonlinear functions in the system. Next, a smooth function is used to approximate the input saturation and an adaptive fuzzy state observer is constructed to solve the problem of unmeasured states. Based on the designed adaptive fuzzy state observer, a serial-parallel estimation model is established. By applying adaptive fuzzy dynamic surface control technique and utilizing the prediction error between the system states observer model and the serial–parallel estimation model, a new fuzzy controller with the composite parameters adaptive laws is developed based on Lyapunov–Krasovskii functional. It is proved that all variables of the closed-loop system are bounded and the system outputs can follow the given bounded reference signals as close as possible. A simulation example is provided to further show the effectiveness of this novel control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call