Abstract

In this paper, a hybrid adaptive output feedback fault-tolerant control is investigated for a class of uncertain nonlinear systems with unmeasured states. The generalized fuzzy hyperbolic model is used to approximate the unknown nonlinear functions, and the fuzzy state estimator (FSE) is established for estimating the unmeasured states. Based on the backstepping and dynamic surface control technique, a novel adaptive control method is proposed by introducing the prediction errors between FSE and serial–parallel estimation model. It is proved that all the variables of the closed-loop systems are semi-globally uniformly ultimately bounded by Lyapunov approach, and the tracking errors can converge to a small neighborhood. Two simulation examples are used to illustrate the effectiveness of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.