Abstract
Abstract The structural and electronic properties of S-doped ZnO are investigated by density functional theory (DFT) and empirical pseudopotential method (EPM). Using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional with an adjusted mixing coefficient α , we obtain a good agreement on lattice parameters and band gap energy with the available experimental data. We have also investigate the Zn-vacancy effects on the electronic and magnetic properties of S-doped ZnO. Our calculations demonstrate that S impurity prefers to be close to the cation vacancy in the apical position. The magnetic analysis with the HSE functional shows a triplet state character with a total magnetic moment of 1.81 μ B , which is mainly arises from the p -orbitals of the atoms around the Zn-vacancy (15% from S, 12% from Zn and 73% from O-atoms). The substitution of S by an isovalent atom decreases the total magnetic moments of the system and weakens the local triplet state without destroying it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.