Abstract
Using hybrid density functional theory, we investigate the properties of native point defects and hydrogen and oxygen impurities in ZnGeN2, a wide-band-gap semiconductor that is promising for applications in electronic and optoelectronic devices. We find that cation antisites have the lowest formation energies amongst all of the native point defects for a wide range of chemical potential conditions. However, native point defects cannot act as sources of doping. Unintentional n-type conductivity in ZnGeN2 must be attributed to impurities: substitutional oxygen on a nitrogen site and interstitial hydrogen act as donors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.