Abstract

In this paper, the hybrid function projective synchronization of unknown Cohen-Grossberg neural networks with time delays and noise perturbation is investigated. A hybrid control scheme combining open-loop control and adaptive feedback control is designed to guarantee that the drive and response networks can be synchronized up to a scaling function matrix with parameter identification by utilizing the LaSalle-type invariance principle for stochastic differential equations. Finally, the corresponding numerical simulations are carried out to demonstrate the validity of the presented synchronization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.