Abstract

A hybrid finite frequency controller is proposed for the vibration suppression of a large flexible structure mounted with collocated sensors and actuators. The controller has passive characteristics at low frequencies and small gain characteristics at high frequencies. Compared with a strictly positive real controller based on the standard Kalman–Yakubovich–Popov lemma, the hybrid finite frequency controller has less energy consumption but can obtain approximately identical performance. Furthermore, when the plant passivity is violated at high frequencies by noncollocation of sensors and actuators, the strictly positive real controller based on the Kalman–Yakubovich–Popov lemma is no longer able to attenuate the vibration of the large flexible structures, while the hybrid finite frequency controller is effective in suppressing the vibration and avoiding spillover instability. Simulation results are presented to validate the effectiveness of the hybrid finite frequency controller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.