Abstract

Gas film bearings offer unique advantages enabling successful deployment of high-speed microturbomachinery. Current applications encompass micro power generators, air cycle machines, and turbo expanders. Mechanically complex gas foil bearings are in use; however, their excessive cost and lack of calibrated predictive tools deter their application to mass-produced oil-free turbochargers, for example. The present investigation advances the analysis and experimental validation of hybrid gas bearings with static and dynamic force characteristics desirable in high-speed turbomachinery. These characteristics are adequate load support, good stiffness and damping coefficients, low friction and wear during rotor startup and shutdown, and most importantly, enhanced rotordynamic stability at the operating speed. Hybrid (hydrostatic/hydrodynamic) flexure pivot-tilting pad bearings demonstrate superior static and dynamic forced performance than other geometries as evidenced in a high-speed rotor-bearing test rig. A computational model including the effects of external pressurization predicts the rotordynamic coefficients of the test bearings and shows good correlation with measured force coefficients, thus lending credence to the predictive model. In general, direct stiffnesses increase with operating speed and external pressurization, whereas damping coefficients show an opposite behavior. Predicted mass flow rates validate the inherent restrictor-type orifice flow model for external pressurization. Measured coast-down rotor speeds demonstrate very low-friction operation with large system time constants. Estimated drag torques from the gas bearings indirectly validate the recorded system time constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.