Abstract
The advancements in intelligent systems have contributed tremendously to the fields of bioinformatics, health, and medicine. Intelligent classification and prediction techniques have been used in studying microarray datasets, which store information about the ways used to express the genes, to assist greatly in diagnosing chronic diseases, such as cancer in its earlier stage, which is important and challenging. However, the high-dimensionality and noisy nature of the microarray data lead to slow performance and low cancer classification accuracy while using machine learning techniques. In this paper, a hybrid filter-genetic feature selection approach has been proposed to solve the high-dimensional microarray datasets problem which ultimately enhances the performance of cancer classification precision. First, the filter feature selection methods including information gain, information gain ratio, and Chi-squared are applied in this study to select the most significant features of cancerous microarray datasets. Then, a genetic algorithm has been employed to further optimize and enhance the selected features in order to improve the proposed method’s capability for cancer classification. To test the proficiency of the proposed scheme, four cancerous microarray datasets were used in the study—this primarily included breast, lung, central nervous system, and brain cancer datasets. The experimental results show that the proposed hybrid filter-genetic feature selection approach achieved better performance of several common machine learning methods in terms of Accuracy, Recall, Precision, and F-measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.