Abstract

The outstanding performances of nanostructured all-inorganic CsPbX3 (X = I, Br, Cl) perovskites in optoelectronic applications can be attributed to their unique combination of a suitable bandgap, high absorption coefficient, and long carrier lifetime, which are desirable for photodetectors. However, the photosensing performances of the CsPbI3 nanomaterials are limited by their low charge-transport efficiency. In this study, a phototransistor with a bilayer structure of an organic semiconductor layer of 2,7-dioctyl [1] benzothieno[3,2-b] [1] benzothiophene and CsPbI3 nanorod layer was fabricated. The high-quality CsPbI3 nanorod layer obtained using a simple dip-coating method provided decent transistor performance of the hybrid transistor device. The perovskite layer efficiently absorbs light, while the organic semiconductor layer acts as a transport channel for injected photogenerated carriers and provides gate modulation. The hybrid phototransistor exhibits high performance owing to the synergistic function of the photogating effect and field effect in the transistor, with a photoresponsivity as high as 4300 A W−1, ultra-high photosensitivity of 2.2 × 106, and excellent stability over 1 month. This study provides a strategy to combine the advantages of perovskite nanorods and organic semiconductors in fabrication of high-performance photodetectors.

Highlights

  • Organometal halide perovskites have attracted a significant interest in the field of optoelectronics owing to their desirable electronic and optoelectronic properties, such as strong and broad light absorption, weakly bound excitons, long-range-balanced electron/hole transport lengths, and low-cost fabrication [1, 2]

  • The outstanding performances of nanostructured allinorganic CsPbX3 (X = I, Br, Cl) perovskites in optoelectronic applications can be attributed to their unique combination of a suitable bandgap, high absorption coefficient, and long carrier lifetime, which are desirable for photodetectors

  • We demonstrated high-performance phototransistors based on the C8BTBT/CsPbI3 nanorod hybrid layers with high photosensitive performances and long-term stabilities in ambient conditions

Read more

Summary

Introduction

Organometal halide perovskites have attracted a significant interest in the field of optoelectronics owing to their desirable electronic and optoelectronic properties, such as strong and broad light absorption, weakly bound excitons, long-range-balanced electron/hole transport lengths, and low-cost fabrication [1, 2] These characteristics make them widely use in solar cells [3, 4], lightemitting diodes (LEDs) [5, 6], lasing [7], and photodetectors [8,9,10]. All-inorganic CsPbX3 (X = I, Br, Cl) perovskites exhibit decent stabilities; among them, the CsPbI3 perovskite exhibited unique properties with a suitable bandgap, high quantum efficiency, and long radiative lifetime [13, 14] This material has two phases: cubic phase and orthorhombic phase. Owing to both surface and nanoeffects, as the size of the perovskite material is reduced to the nanoscale, the phase stability can significantly differ from that in the bulk counterpart [15,16,17,18]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call