Abstract

Identifying reproducible and interpretable biomarkers for Alzheimer's disease (AD) detection remains a challenge. AD detection using multi-center datasets can expand the sample size to improve robustness but might lead to a data privacy problem. Moreover, due to the high cost of labeling data, a lot of unlabeled data in each center is not fully utilized. To address this, a hybrid FL (HFL) framework is proposed that not only uses unlabeled data to train deep learning networks, but also achieves data privacy protection. We propose a novel Brain-region Attention Network (BANet), which highlights important regions via attention to represent the region of interest (ROIs).Specifically, we use a brain template to extract ROI signals from the preprocessed structure magnetic resonance imaging (sMRI) data. In addition, we add a self-supervised loss to the current loss to guide the attention map generation to learn the representations from unlabeled data. Finally, we evaluate our method on a multi-center database which is constructed using five AD datasets. The experimental results show that the proposed method performs better than state-of-the-art methods, achieving mean accuracy rates of 85.69 %, 63.34 %, and 69.89 % on the AD vs. NC, MCI vs. NC, and AD vs. MCI respectively. The source code is available for reproducibility at: https://github.com/yuliangCarmelo/HFL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.