Abstract

Link prediction is an effective technique to be applied on graph-based models due to its wide range of applications. It helps to understand associations between nodes in social communities. The social networking systems use link prediction techniques to recommend new friends to their users. In this paper, we design two time efficient algorithms for finding all paths of length-2 and length-3 between every pair of vertices in a network which are further used in computation of final similarity scores in the proposed method. Further, we define a hybrid feature-based node similarity measure for link prediction that captures both local and global graph features. The designed similarity measure provides friend recommendations by traversing only paths of limited length, which causes more faster and accurate friend recommendations. Experimental results show adequate level of accuracy in friend recommendations within considerable computing time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.