Abstract
A hybrid feature and decision level information fusion architecture is proposed for human emotion recognition from facial expression and speech prosody. An active buffer stores the most recent information extracted from face and speech. This buffer allows fusion of asynchronous information through keeping track of individual modality updates. The contents of the buffer will be fused at feature level; if their respective update times are close to each other. Based on the classifiers' reliability, a decision level fusion block combines results of the unimodal speech and face based systems and the feature level fusion based classifier. Experimental results on a database of 12 people show that the proposed fusion architecture performs better than unimodal classification, pure feature level fusion and decision level fusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.