Abstract

Facial expression recognition is a vital research topic in most fields ranging from artificial intelligence and gaming to human–computer interaction (HCI) and psychology. This paper proposes a hybrid model for facial expression recognition, which comprises a deep convolutional neural network (DCNN) and a Haar Cascade deep learning architecture. The objective is to classify real-time and digital facial images into one of the seven facial emotion categories considered. The DCNN employed in this research has more convolutional layers, ReLU activation functions, and multiple kernels to enhance filtering depth and facial feature extraction. In addition, a Haar Cascade model was also mutually used to detect facial features in real-time images and video frames. Grayscale images from the Kaggle repository (FER-2013) and then exploited graphics processing unit (GPU) computation to expedite the training and validation process. Pre-processing and data augmentation techniques are applied to improve training efficiency and classification performance. The experimental results show a significantly improved classification performance compared to state-of-the-art (SoTA) experiments and research. Also, compared to other conventional models, this paper validates that the proposed architecture is superior in classification performance with an improvement of up to 6%, totaling up to 70% accuracy, and with less execution time of 2,098.8 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.