Abstract

Reliable forecasting of short-term traffic flow is an essential component of modern intelligent transport systems. However, existing methods fail to deal with the non-linear nature of short-term traffic flow, often making the forecasting unreliable. Herein, we propose a reliable short-term traffic flow forecasting method, termed hybrid extreme learning, that effectively learns the non-linear representation of traffic flow, boosting forecasting reliability. This new algorithm probes the non-linear nature of short-term traffic data by exploiting the artificial bee colony that selects the best-implied layer deviation and input weight matrix to enhance the multi-structural information perception capability. It speeds up the forecasting time by calculating the output weight matrix, which guarantees the real usage of the forecasting method, boosting the time reliability. We extensively evaluate the proposed hybrid extreme learning method on well-known short-term traffic flow forecasting datasets. The experimental results show that our method outperforms existing methods by a large margin in both forecasting accuracy and time, effectively demonstrating the reliability improvement of the proposed method. This reliable method may open the avenue of deep learning techniques in short-term traffic flow forecasting in real scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.