Abstract

The recently developed methods of explicit (multi-parametric) model predictive control (e-MPC) for hybrid systems provide an interesting opportunity for solving a class of nonlinear control problems. With this approach, the nonlinear process is approximated by a piecewise affine (PWA) hybrid model containing a set of local linear dynamics. Compared to linear-model-based MPC, a performance improvement is expected with the reduction of the plant-to-model mismatch; however at a cost of controller computation complexity. In order to reduce the computational load, so that desired horizon lengths may be used, we present an efficient sub-optimal solution. The feasibility of the approach for the application was evaluated in an experimental case study, where an output feedback, offset-free-tracking hybrid e-MPC controller was considered as a replacement for a PID-controller-based scheme for the control of the pressure in a wire-annealing machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.