Abstract

Particle swarm optimization (PSO) is an evolutionary algorithm based on the behavior of social animals. Its key advantage is its computational efficiency compared to related techniques such as genetic algorithm (GA). Use of a modified PSO algorithm in selecting an optimal array of pollution prevention techniques for clay brick production is described. The model is formulated as a multi-constraint knapsack optimization problem. The optimization technique used in the study is a binary PSO augmented with a GA-based mutation operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.