Abstract

This paper presents a procedural framework that unifies various mechanisms to look for discrete-neighborhood saddle points in solving discrete constrained optimization problems (DCOPs). Our approach is based on the necessary and sufficient condition on local optimality in discrete space, which shows the one-to-one correspondence between the discrete-space constrained local minima of a problem and the saddle points of the corresponding Lagrangian function. To look for such saddle points, we study various mechanisms for performing ascents of the Lagrangian function in the original-variable subspace and descents in the Lagrange-multiplier subspace. Our results show that CSAEA, a combined constrained simulated annealing and evolutionary algorithm, performs well when using mutations and crossovers to generate trial points and accepting them based on the Metropolis probability. We apply iterative deepening to determine the optimal number of generations in CSAEA and show that its performance is robust with respect to changes in population size. To test the performance of the procedures developed, we apply them to solve some continuous and mixed-integer nonlinear programming (NLP) benchmarks and show that they obtain better results than those of existing algorithms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call