Abstract

In sensor networks (SNs), how to allocate the limited resources so as to optimize data gathering and network utility is an important and challenging task. This chapter introduces a hybrid event-time-driven communication and updating scheme, with which sensor network optimization problems can be solved. A distributed hybrid driven optimization algorithm based on the coordinate descent method is presented. The proposed optimization algorithm differs from the existing ones since the hybrid driven scheme allows more choices of actuation time, resulting a tradeoff between communications and computation performance. Applying the proposed algorithm, each sensor node is driven in a hybrid event time manner, which removes the requirement of strict time synchronization. The convergence and optimality of the proposed algorithm are analyzed, and verified by simulation examples. The developed results also show the tradeoff between communications and computation performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.