Abstract

The impact of global warming and climate change has forced countries to introduce strict policies and decarbonization goals toward sustainable development. To achieve the decarbonization of the economy, a substantial increase of renewable energy sources is required to meed energy demand and to transition away from fossil fuels. However, renewables are sensitive to environmental conditions, which may lead to imbalances between energy supply and demand. Battery energy storage systems are gaining more attention for balancing energy systems in existing grid networks at various levels such as bulk power management, transmission and distribution, and for end-users. Integrating battery energy storage systems with renewables can also solve reliability issues related to transient energy production and be used as a buffer source for electrical vehicle fast charging. Despite these advantages, batteries are still expensive and typically built for a single application – either for an energy- or power-dense application – which limits economic feasibility and flexibility. This paper presents a theoretical approach of a hybrid energy storage system that utilizes both energy- and power-dense batteries serving multiple grid applications. The proposed system will employ second use electrical vehicle batteries in order to maximise the potential of battery waste. The approach is based on a survey of battery modelling techniques and control methods. It was found that equivalent circuit models as well as unified control methods are best suited for modelling hybrid energy storages for grid applications. This approach for hybrid modelling is intended to help accelerate the renewable energy transition by providing reliable energy storage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call