Abstract

In the field of earthquake engineering, ground-motion prediction models are frequently used to estimate the peak ground acceleration (PGA) and the pseudos- pectral acceleration (PSA). In regions of the world where ground-motion recordings are plentiful, such as western North America (WNA), the ground-motion prediction equations are obtained using empirical methods. In other regions, such as eastern North America (ENA), with insufficient ground-motion data, alternative methods must be used to develop ground-motion prediction equations (GMPEs). The hybrid empiri- cal method is one such method used to develop ground-motion prediction equations in areas with sparse ground motions. This method employs the stochastic simulation method to adjust empirical GMPEs developed for a region with abundant strong- motion recordings in order to estimate strong-motion parameters in a region with a sparse database. The adjustments take into account differences in the earthquake source, wave propagation, and site-response characteristics between the two regions. In this study, a hybrid empirical method is used to develop a new GMPE for ENA, using five new ground-motion prediction models developed by the Pacific Earthquake Engineering Research Center (PEER) for WNA. A new ENA GMPE is derived for a magnitude range of 5 to 8 and closest distances to the fault rupture up to 1000 km. Ground-motion prediction equations are developed for the response spectra (pseudoacceleration, 5% damped) and the PGA for hard-rock sites in ENA. The resulting ground-motion prediction model developed in this study is compared with two ENA ground-motion models used in the 2008 national seismic hazard maps as well as with available observed data for ENA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.