Abstract
Email spam is an increasing problem that not only affects normal users of internet but also causes a major problem for companies and organizations. Earlier techniques have been impaired by the adaptive nature of unsolicited email spam. Inspired by adaptive algorithm, this paper introduces a modified machine learning technique of the human immune system called negative selection algorithm (NSA). A local selection differential evolution (DE) generates detectors at the random detector generation phase of NSA; code named NSA–DE. Local outlier factor (LOF) is implemented as fitness function to maximize the distance of generated spam detectors from the non-spam space. The problem of overlapping detectors is also solved by calculating the minimum and maximum distance of two overlapped detectors in the spam space. From the experiments, the results show that the detection accuracy of NSA–DE is 83.06% while the standard negative selection algorithm is 68.86% at 7000 generated detectors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.