Abstract
With the constantly increasing pressure of the competitive environment, supply chain (SC) decision makers are forced to consider several aspects of business climate. More specifically, they should take into account the endogenous features (e.g., available means of transportation, and the variety of products) and exogenous criteria (e.g., the environmental uncertainty, and transportation system conditions). In this paper, a mixed integer nonlinear programming (MINLP) model for dynamic design of a supply chain network is proposed. In this model, multiple products and multiple transportation modes, the time value of money, traffic congestion, and both supply-side and demand-side uncertainties are considered. Due to the complexity of such models, conventional solution methods are not applicable; therefore, two hybrid Electromagnetism-Like Algorithms (EMA) are designed and discussed for tackling the problem. The numerical results show the applicability of the proposed model and the capabilities of the solution approaches to the MINLP problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.