Abstract

Electrically assisted engine boosting systems lend themselves to better throttle response, wider effective operating ranges, and can provide the ability to extract excess energy during deceleration and high-load events (and store it in a vehicle's onboard batteries). This can lead to better overall vehicle performance, emissions, and efficiency while allowing for further engine downsizing and increased power density. In this research effort, a hybrid-electric turbocharger, variable-frequency drive (VFD), and novel sensorless control algorithm were developed. An 11 kW permanent-magnet (PM) machine was coupled to a commercial turbocharger via an in-line, bolt-on housing attached to the compressor inlet. A high-efficiency, high-temperature VFD, consisting of custom control and power electronics, was also developed. The VFD uses SiC MOSFETS to achieve high-switching frequency and can be cooled using an existing engine coolant loop operating at up to 105 °C at an efficiency greater than 98%. A digital sliding mode-observer sensorless speed control algorithm was created to command and regulate speed and achieved ramp rates of over 68,000 rpm/s. A two-machine benchtop motor/generator test stand was constructed for initial testing and tuning of the VFD and sensorless control algorithm. A gas blow-down test stand was constructed to test the mechanical operation of the hybrid-electric turbocharger and speed control using the VFD. In addition, a liquid-pump cart was assembled for high-temperature testing of the VFD. Initial on-engine testing is planned for later this year. This paper intends to present a design overview of the in-line, hybrid-electric device, VFD, and performance characterization of the electronics and sensorless control algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call